
www.manaraa.com

Programming the Web -
Design and Implementation of a

Multidatabase Browser

Marta Jakobisiak

CISL WP# 96-04
May 1996

The Sloan School of Management
Massachusetts Institute of Technology

Cambridge, MA 02142

www.manaraa.com

www.manaraa.com

Programming the Web - Design and Implementation of a Multidatabase
Browser

by
Marta Jak6bisiak

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 1996, in partial fulfillment of the

requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented the Multidatabase Browser and the Wrapper
Generator. The Multidatabase Browser is a tool that allows a single query interface to
heterogenous sources: relational databases and data published through the World Wide
Web. The Browser is a front end application to the Context Interchange Network (COIN).
Structured or semi-structured Web sources are incorporated to the COIN system through
the Wrapper Generator. The Wrapper Generator is a Web agent that extracts data val-
ues from the WWW documents by following a specification. This allows COIN users to
issue queries using Structured Query Langueage to both databases and WWW information
sources.

Thesis Supervisor: Michael D. Siegel
Title: Principal Research Scientist, Sloan School of Management

www.manaraa.com

www.manaraa.com

Acknowledgments

I would like to thank my thesis advisor, Michael Siegel, and Professor Stuart Madnick for
giving me the opportunity to work on the Context Interchange Project, and for their advice
and support. I would like to thank the whole Context Interchange team for providing a great
working atmosphere. In particular, Cheng Goh and Tom Lee for many excellent insights
and suggestions.

Special thanks to Anne Hunter, for all the help to make this thesis a legal document
and for reducing the Institute bureaucracy to the necessary minimum.

Finally, I would like to thank my parents, Elibieta and Marek Jak6bisiak and my sister,
Kasia and Gunnar for their love, encouragements and support. I would especially like to
thank Gunnar for proof reading this thesis and correcting my grammar.

www.manaraa.com

Contents

1 Introduction
1.1 Multidatabase Browser and Wrapper Generator

2 Background
2.1 The W eb .
2.2 The HTTP protocol
2.3 HTML and CGI .
2.4 Advantages and limitations of programming the Web .

2.4.1 Security Concerns
2.4.2 Restrictions of HTT

2.5 COIN versus standard inde

.
P
xing systems

3 Design
3.1 COIN's architecture

3.1.1 Information Receivers
3.1.2 Datasource Registry
3.1.3 Mediator Services

3.2 Design of Multidatabase Browser
3.2.1 Interface Design Considerations

3.3 The Wrapper Generator
3.3.1 Web accessible sources
3.3.2 Specification File

4 Implementation
4.1 CGI and Perl
4.2 Multidatabase Browser Interface

4.2.1 A typical SQL query
4.2.2 Testing

4.3 Wrapper Generator Algorithm
4.3.1 Problems and Limitations

5 Lessons Learned and Future Directions
5.0.2 Future Work - Multidatabase Browser
5.0.3 Java and Javascript

5.1 Conclusions

A Networth's description files
A.1 An Export Schema

www.manaraa.com

A.2 A Specification File . 53
A.2.1 Legend . 54

www.manaraa.com

List of Figures

1-1 Networth quotes server: entry page. 11
1-2 Networth quotes server: results for "orcl". 12

2-1 A Typical URL . 15

3-1 COIN Architecture. 23
3-2 Description file for Networth. Entries for an export schema, specification file

and the actual quote server shown. 25
3-3 State transition diagram for Networth quotes server. 33

4-1 User selects Networth source to be queried. 37
4-2 Networth source has only one relation - "networth". 38
4-3 "Ticker", "Company" and "Last" attributes are selected. 39
4-4 The user wishes to see the latest stock price and company name for Oracle

Corporation. 40
4-5 The SQL syntax. 41
4-6 And finally, the results. 42

www.manaraa.com

Chapter 1

Introduction

Since 1990, when it first came around, the World Wide Web (WWW) has experienced a
tremendous growth, both in the academic and commercial worlds, and is now one of the
primary means of information publishing on the Internet.

With a single mouse click you can reach everything from the CIA Factbook' to updates
on Beavis and Butthead's latest episodes2. And it is not merely text files that are at
your reach, multimedia is making its presence through pictures, sound and animation clips
that you can download at your wish. The ever-increasing usage of the WWW, which has
experienced exponential growth over the past five years, has established the need for, and
usefulness of providing information and services over the Internet. Many institutions are
trying to make their databases accessible via Internet. This is not an easy task, due to
limitations of the Web technology for database support, but major database companies
as well as independent software vendors are developing products aimed at bringing the
database and networking worlds closer together.

As a result, the volume of data that one will be able to access via the Internet is growing,
and so is the problem of trying to understand and interpret all the information. The chances
of data providers and data receivers having different assumptions about the data exchanged
are high. 2.01.95 might mean 1st of February in the US, but in Europe it means January
the 2nd. Different context of the data lead to possible confusion and conflicts when the
information from heterogeneous sources is brought together. The database integration
community has been addressing those issues for a while.

The Context Interchange Network (COIN) project at the Sloan School of Management
at MIT has proposed one of the possible approaches for achieving interoperability among
heterogeneous data sources and receivers. The meaning and underlying assumptions about
the data set are explicitly represented as data contexts. When the need to bring together
data of different context arises, it is a job of Context Mediator to determine semantic
conflicts between contexts and apply any transformations necessary to exchange the data
in meaningful way.

The COIN systems uses the Structured Query Language (SQL) as a means of issuing
queries to data sources. Each query issued by the receiver is translated to a source context
if necessary by the Context Mediator and then passed on to the data source. The data
returned is similarly translated to the receivers context and presented to the receiver. This
process allows COIN to extract disparate data from different sources and produce consistent

1http://www.odci.gov/cia/publications/95fact/index.html
2http://beavis. cba. uiuc. edu/

www.manaraa.com

results for data receivers.
The WWW has been chosen for the second prototype 3 implementation of the COIN

project, as it provides an easy way of reaching the ever-growing volume of information.
The heterogeneous nature of the data additionally establishes the need and justification for
COIN's project.

The choice of WWW as an underlying infrastructure puts the Context Interchange
Project at the very front of an emerging new technology, both in terms of database inte-
gration efforts and in building WWW applications. While knowledge representation and
resolving semantic conflicts are extremely interesting research topics, development of inter-
active applications on the Web is a very interesting area as well, because of its relatively
new nature and its inherent problems, that are due to the fact that WWW was originally
designed to serve static documents, and not to interact with them. The goal of this the-
sis is to illustrate an example of designing and implementing two WWW applications for
the COIN project, and to discuss the difficulties of making the Web an infrastructure for
interactive applications.

In the remaining part of this Chapter we will state the purpose of the Multidatabase
Browser and the Wrapper Generator - two WWW applications that this thesis is based on.
In Chapter 2, background information on the Hypertext Transfer Protocol (HTTP), the
backbone of WWW, will be discussed. In this Chapter, the COIN approach, as compared
to standard indexing systems, will be examined in the light of the problem of resource
discovery on the Web. Chapter 3 will present an overview of the COIN architecture, with
a particular emphasis on the Multidatabase Browser4 and the Wrapper Generator. The
Multidatabase Browser's implementation will be examined in Chapter 4. This Chapter
will also include a discussion of the algorithm behind the Wrapper Generator and address
the issue of incorporating the data published on the World Wide Web to COIN. Finally,
Chapter 5 will summarize lessons learned about the WWW as an application interface, and
discuss the limitations of the current system.

1.1 Multidatabase Browser and Wrapper Generator

Client applications can interact with the data sources registered with COIN by issuing
SQL queries. Those queries are then processed by the system. In some cases, when the
data source does not comply to the relational database model, the SQL query is translated
to the native query format of the source. This provides the abstraction barrier for the
clients, who now have a homogeneous way (SQL) of querying sources which might not be
relational databases, but Web pages, for example. The Web sources that are used in a
sample application are those that provide financial information. Several such sources are
now freely avalable. They provide a number of services ranging from up to date stock
quotes information to conversion rates between different currencies. The Networth site, for
example, serves stock quotes for companies, subject to a fifteen minutes time delay. Users

can obtain quotes by entering a ticker symbol in the space provided and pressing a submit

3The first prototype implementation was based on a three-tiered client-server system [3]
4The name of this application is somewhat unfortunate, because the word browser in the Internet com-

munity usually refers to either Netscape Navigator or Mosaic. I decided however to keep the name as it is

and apply the following convention: the Browser with the capital "B" will refer throughout this document
to the application that is described in this Thesis. The browser with a lowercase "b" will refer to Netscape,
Mosaic and others.

www.manaraa.com

button. A screen dump of the Networth entry page is shown in Figure 1-1 on page 11. A
typical result page is shown in Figure 1-2. Stock information, such as the price of last trade
(Last), the number of shares traded so far a particular day (Volume), the ratio of price to
per-share earnings (P/E Ratio), and more, is provided.

Figure 1-1: Networth quotes server: entry page.

The users of the COIN system are assumed to know the basics of SQL. It is one thing,
however, to understand the SQL syntax, and yet another thing to be able to compose the
query to a data source whose structure is not known to the user. The valid query must
contain proper relation and attribute names. This information has to be available to the
users without allowing them direct access to the data sources.

Enter the Multidatabase Browser. As the name suggests, this application is a single
query interface that allows for structured acceess to the information available in the sources
registered with the COIN project. The Browser guides clients through the formulation of
SQL queries in a Query By Example (QBE) [4] fashion, similar to Microsoft's Access, by
going through a set of HTML forms. The resulting query is then shipped by the Browser to
the Mediation Engine, and processed results are presented back to the clients in a tabular
form. The purpose of the Multidatabase Browser is clearly to provide the front end access
to the COIN system via the WWW. In doing so, one of the Browser's functions is to
communicate with the underlying data sources. Accessing databases through the Web is
an old problem [12], and many interfaces have been developed for that purpose by software

www.manaraa.com

Figure 1-2: Networth quotes server: results for "orci".

vendors. Since the database and WWW server often run on the same machine, it is a

simple matter of providing a gateway interface that can communicate both with the HTTP
protocol and understand the database commands. A comprehensive summary of currently
available solutions for Unix and PC platforms can be found at:

http://cscsunl.larc.nasa.gov/~beowulf/db/existing-products.html.
It is an entirely different issue, however, to communicate with a database that one can only
access via a gateway. Among many financial services available on the Web today, each one
has a unique interface, and a unique pattern of interaction, and it might be confusing for the
information gatherers to learn all the details necessary to collect meaningful data distributed
over a number of sites. The COIN project has developed a strategy to incorporate the data

freely available on the Web into the system, and allow clients to formulate SQL queries to

all that data in a uniform fashion - through the Multidatabase Browser interface. Each

such site is represented to the system through its specification file. The Wrapper Generator

then takes in the SQL query, translates it to the native format for the source, and opens

an HTTP connection to the document server. A reformulated query, constructed by the

Wrapper Generator, is then sent to the server, which returns the requested HTML pages.

All the needed data is then extracted from those pages, arranged in a table, and, finally,

presented back to the Multidatabase Browser. The commands necessary to perform all the

steps involved in this interaction are generated automatically from the specification file.

www.manaraa.com

The strategy behind this process of "borrowing" the WWW data will be discussed in detail
in Chapter 4.

www.manaraa.com

Chapter 2

Background

2.1 The Web

In recent years, the Internet has received considerable attention from academic commu-
nities, industry and the government. The ever growing number of users and resources
available justifies the name "Information Superhighway". There is no question about the
importance of the Internet as the primary means of information exchange in the future. As
"surfing" the Net becomes more and more popular, it is important to understand the un-
derlying mechanism of the Web and the promises and constraints it imposes on the WWW
developers.

2.2 The HTTP protocol

On the surface, the Web is just a friendly interface, provided by Mosaic or Netscape
browsers. Underneath, there are messages transferred through the net that speak the Hy-
pertext Transfer Protocol (HTTP).

A typical interaction works as follows. A Web browser, or independent Web agent (such
as a Web robot, for example) connects to a known in advance telnet port on a machine that
stores the document the browser needs to access [1].

Each document has an identity: a Uniform Resource Locator (URL), which tells the
browser the protocol of the document (besides HTTP, it can also be FTP, Gopher, WAIS,
and others), the server and a direct path to the document on that server (Figure 2-1). Once
the connection is established, the browser issues a command to the server, captures the
document, and displays it. The command, also called a request method, can be one of the
following: Get, Head, Post, Put, Delete, and, possibly, others. The most popular request
method is HTTP Get, which tells the server to return all the contents of the document.

server name path to document

protocol name port number

Figure 2-1: A Typical URL.

www.manaraa.com

HTTP Post, originally designed for posting articles to the newsgroups, is currently mostly
used for processing fill-out forms.

A browser usually makes several requests to retrieve a typical document: text and
graphics are retrieved separately.

2.3 HTML and CGI

The actual documents transferred over the Web are written in Hypertext Markup Language
(HTML). HTML specifies a set of tags that tell the browser how to layout the ASCI string
retrieved from the server. There are tags that denote document title (<TITLE>), headers
(<H1...H4>), paragraphs (<PR>), different fonts or styles, graphic images, links to other
documents and even tables1 . The browser can choose to interpret all the tags or ignore some
of them 2. Document writers must keep this in mind: certain layout features supported by
their favorite browser may not be supported by others.

The Web was originally created to transfer static documents, but soon the need for in-
teractive applications became apparent. Mainly driven by the need to query the databases
residing on a server [12], the Common Gateway Interface (CGI) was developed. CGI de-
scribes a standard way for executing programs that run on the server in response to the
client's request, and can usually do much more then merely accessing a database. CGI
programs accept arguments and create HTML content on the fly, based on user input,
and then return it to the browser for display. Interaction with CGI programs is achieved
through the standard set of widgets, such as text entry fields, toggle buttons, push-buttons
or check-boxes. The most direct way to send data to a CGI script is to append it to the
URL. The query string begins with a question mark, arguments are separated by & signs
and spaces (and other reserved characters) are escaped to + signs.

http://quotes.galt.com/stockclnt?stock=Oracle+Systems&action=search
translates to: search the index for the string "Oracle Systems".

2.4 Advantages and limitations of programming the Web

The explosion of the Web's popularity created an exciting opportunity for the application
programmers and system designers. By making an application Web-accessible, one can avoid
the headaches of porting to a variety of platforms and costs of distributing new releases,
upgrades, and bug fixes, all of which are so painfully present in the traditional software
development cycle [6]. Those administrative advantages are of special importance for small
research institutions and organizations who simply cannot afford providing system support
for multiple platforms.

The Web-based application also has a better chance of attracting a larger user commu-
nity, because it places just one requirement on the users - having access to a Web browser.
This has been especially attractive for commercial vendors. As a downside, a large user
community translates to a large number of requests per day that have to be serviced by the
Web server, and can be a mixed blessing, in some cases.

The true problems with using the Web as a development environment come in two
flavors. First, it is hard to implement certain features in the Web application due to the

'in HTML version 3.0.
2The Lynx browser ignores graphics, for example.

www.manaraa.com

restrictions of the HTTP protocol. Second, in many cases, it is hard to use such applications
efficiently.

2.4.1 Security Concerns

Ever since CGI emerged as the standard for programming the Web, and made it possible to
provide database access over the Internet, it became clear that the Web lacks the facilities
to secure user privacy by authenticating incoming requests.

More importantly, poorly written scripts can be abused by users to access local system
information and resources when not intended, and potentially damage them. Such problems
can easily be avoided by carefully scanning the user input for abusive commands3 before
passing it on to the server for execution. Another concern for the script writers is the Web's
inherent lack of identification of its users. When knowledge of the user's identity is crucial
for the application program, such as in the case of credit card transactions, additional work
has to be done [2].

2.4.2 Restrictions of HTTP

Another problem is caused by the stateless nature of the HTTP protocol - no data is
stored on a server unless the application itself does so explicitly. Applications that require
persistent storage can achieve this by storing the data in a form of hidden fields so that it
persists on a client (the hidden fields are explained in more detail is Section 4.2.2).

It is also currently impossible to implement many features of sophisticated user interfaces
over the Web [11]. Since there are only two ways a browser can transmit information to
the server: either by a user selecting a hypertext link or by pressing a submit button; it is
impossible for the server to determine anything about the intermediate actions of the user
and act upon it. It is impossible, therefore, to provide direct feedback to the users, before
they commit to submitting their requests. Applications also have very limited control over
their appearance. It is up to each individual browser to determine how to render HTML
anchors and how to layout the pages4. The limited widget set forces complex interactions
to be broken up into many simple steps. In order to help application developers to provide
a consistent look to their interfaces, and hence eliminate the user's confusion, many Web
style guides have been written, for example "Style for on-line hypertext" written by Tim
Berners-Lee and available at:

http://www.pku.edu.cn/on-ine/w3html/Provider/Style/Overview.html.

Some of the more interesting remarks include paying attention to the size of the doc-
ument to avoid scrolling, always signing the work with authors email address to allow for
users feedback, and not formatting the work for a specific browser so that even a user with
only a text terminal can make use of the application, and avoiding blinking text5 .

3Such as: eval 'rm -r *', which would recursively remove all the Unix system files.
4Netscape recognizes HTML 3.0 tables, the Mosaic browser simply ignores them.
5Netscape 1.1 and higher versions provide this option, which when used results in HTML pages that are

irritating to the eye and hard to read.

www.manaraa.com

2.5 COIN versus standard indexing systems

The explosive growth of the Web is making it difficult for the users to locate the information
relevant to their interests. There are just too many sites one has to browse through to find
answers to simple questions. Let us consider for a moment a family planning a vacation
in Greece. They want to avoid the tourist rush and go off season, in June. What sort of
temperatures should they expect? The answer to their question is published on the Internet.
The problem is that this answer is hard to find.

Several solutions have been proposed to address this so called Internet resource discovery
problem. Most of them involve an indexing system of some sort. Behind each system, there
is a tool, usually called a Web robot, that automatically navigates the Web, and indexes
the document titles and the document content. The users can then issue queries directly to
a precomputed index or a search program. AltaVista is one of the better known publically
available search engines 6. In our example, the family finds the AltaVista homepage and
submits a search for the keyword "travel". 1000000 responses are found, including tips
for business travelers, a guide to African safari, and many more documents of to value for
our family. This illustrates the main problem with AltaVista and similar Internet indexing
systems: the effectiveness of answering user queries in low. No matter how good the search
and ranking algorithm is, it does not guarantee that the documents with high relevance
scores are actually relevant to the users information needs [8],[10]. Also, the sheer volume
of information retrieved when searching on popular keywords might be overwhelming to the
user. Scanning through the megabytes of pages to find out an answer to a specific query is
not very practical and can be quite agitating.

The COIN system addresses the Internet discovery problem in a different way. First of
all, all user queries to COIN are issued using SQL. This gives users more control over the
number of answers they get back: the more restrictions they put in the query, the more
specific answers they get back. The second very important difference is that COIN is not
an indexing system. The answers to users queries are data elements arrangement in a table
rather then links to HTML documents. The Wrapper Generator does all the work to extract
relevant data values from HTML documents. COIN also helps the users formulate queries
through the Multidatabase Browser interface. If a source weather that carries international
weather forecast information was registered with COIN, our family could find out all they
wanted about the weather in Greece by means of a single query:

select weather. temperature, weather. humidity
from weather
where weather.location = 'Greece' and weather.month = 'June'
The weather source would have to be registered with COIN: certain description files

would have to be created that tell the system what data elements this source can export
(i.e. temerature, humidity, location, etc.) and where they are located in the original HTML
document. This means that someone would have to write description files in advance.
This is yet another difference between COIN and WWW indexing systems. The Web
robots discover and index new sites automatically. New sites can be added to the system
without any human interaction. Moreover, those sites are not required to have any structure.
COIN's interest, on the other hand is in structured and semi-structured sites that can

6 AltaVista was developed by Digital's Research Laboratories in Palo Alto. It indexes over 30 million
HTML pages. It can be found at
http://www.altavista.digital.com

www.manaraa.com

be respresented using a relational model. Such sites have to be carefully analized and
description files have to be written for them to be of any use to COIN. Naturally, the
number of sites registered with COIN will always be several orders of magnitude smaller
than the number of sites indexed by a Web robot. One could say, therefore, that COIN's
strength is in the quality, rather than the quantity of the information it provides.

www.manaraa.com

Chapter 3

Design

3.1 COIN's architecture

The Context Interchange Network was designed using a three tier architecture
paradigm. The World Wide Web provided an application interface to the system. This
Chapter discusses COIN's main components. The overall structure of the network prototype
implementation is shown in Figure 3-1.

WWW sources

Relational databases

Figure 3-1: COIN Architecture.

At the heart of the system lie the mediator middleware services. The middle layer also
contains data source directory services. The backend consists of gateways to the actual
sources of information, which are currently both Web servers and full fledged relational
databases.

www.manaraa.com

3.1.1 Information Receivers

The Context Interchange Network defines a simple interface for all its clients. Eight ba-
sic commands are currently supported. They mimic some basic ODBC (Open Database
Connectivity) [9] calls:

" SQLDataSources: lists all the sources in the Datasource Registry.

* SQLGetInfo: returns information about the source. At this point, this is simply a
URL for the actual Web server, but additional information can be added in the future.

" SQLTables: returns a list of table names stored in a specific data source.

* SQL Columns: returns a list of column names in a specified table.

* SQLDescribeCol: provides the datatype of the data in a particular column.

" SQLExecDirect: executes an SQL statement and stores results in a Fetch Queue.

* SQLFetch: returns a result row.

" SQLExtendedFetch: returns all results rows at the same time.

Client applications can issue these commands to help users formulate SQL queries and
display results in a custom form. Since the API commands resemble ODBC functions, it
will be possible for the ODBC complaint applications, such as Microsoft Access or Excel
spreadsheet, to communicate with the mediator services through the ODBC - Mediator API
converter. So far the only front end application implemented is the Multidatabase Browser.

3.1.2 Datasource Registry

In order for a data source to become part of the Context Interchange Network, its description
has to appear in the Datasource Registry. Each source has a descriptor file, which is
an HTML document. Its location is not, therefore, limited to the Context server. This
guarantees system scalability once the number of registered sources grows beyond storage
capabilities of our server and allows the source maintainers to update the information about
the source if applicable. Each descriptor file currently contains three pointers (HTML links):
to an export schema, to the specification file, and a URL for the actual source of the data,
whether it is a Web site or a full fledged relational dababase system. An example of a
descriptor file for the Networth source is shown in Figure 3-2.

An export schema defines what data elements are available from the source, and it is
organized in the form of attributes and relations. The Networth source can be modeled,
for example, as having one table, called networth, and several attributes (Company, Last,
P/E Ratio and others). An export schema also contains the datatypesi asssociated with
each column. In the above example, Company would be represented by a VARCHAR: a
character string of a variable length, and P/E Ratio would be a NUMBER.

The specification file describes the actions that need to be performed by the Wrapper
Generator in order to retrieve the actual data values from the site. Depending on the
nature of the source, those can be as simple as passing an SQL query to the WWW -
database gateway (in the case of RDBMS's) or performing a sequence of interactions with

'Datatypes are required for the ODBC applications that will be connected to COIN in the future.

www.manaraa.com

export schema

description file

actual source Not Stock assipled forsplits fordatabeforJuly2 21995.

Figure 3-2: Description file for Networth. Entries for an export schema, specification file
and the actual quote server shown.

www.manaraa.com

the site's server, in the case of Web sources2 . An export schema for the Networth site and
a corresponding specification file are shown in Appendix A.

To publish data with COIN, the source merely needs to define an export schema and
write a specification file.

3.1.3 Mediator Services

In the simplest scenario, when no context mediation is performed on the user queries,
COIN simply allows the front end applications to access registered data sources. When the
query involves a single source, the Router simply ships the query off to either, for the Web
sources, the Wrapper Generator, or, for the relational databases, to the WWW-database
gateway.(see Figure 3-1). The decision is based on the type information contained in the
specifications file (so far there are only two types: "WEB", for sources such as Networth,
and "DB" for databases). The Wrapper processes the query, according to the information
contained in the specification file. A WWW-database gateway passes the query to the
actual database system for execution. In either case, the results are returned back to the
Router.

A multidatabase query would ideally be first routed to the query planner, where it would
be transformed to a series of subqueries. Each individual subquery would in turn be passed
on to the Wrapper. The results would be assembled in a table, and returned to the front end
application after executing SQLFetch or SQLExtendedFetch commands. The multidatabase
query processing capability is currently not implemented.

Once the context mediation process is enabled, the Router passes the incoming query
to the Mediation Engine. At first, the contexts3 of sources and receivers are compared and
semantic conflicts among them are detected. This is called the conflict detection stage.
The conversion table that lists all the transformations necessary to carry one context to
another is created in this stage. Next, all the necessary conversions are applied and the
query is optimized. At this point, the query is presented to the Wrapper, results are fetched,
converted back to the receiver's context, and finally, returned to the front end application.
For a detailed discusion of the mediation process, a sample context and a conversion table
refer to [3].

3.2 Design of Multidatabase Browser

The Multidatabase Browser is an example of a COIN client application. The main goal
of the Browser is to guide the user through the process of formulating an SQL query to
be posted to the mediator middleware services. The design of the Browser was focused on
making the interface as clear and intuitive for the users as possible, subject to the constraints
imposed by the Web environment.

The SQL query itself is composed in a Query By Example (QBE) fashion, similar to
Microsoft's Access. Studies have shown [15] that QBE takes less training time and results
in a higher query writer confidence when compared to bare SQL. In a typical interaction,
the user goes through a set of screens and narrows down the choices for his query step by
step. First, the user has to specify which data source, or data sources he wants to query

2This interaction is described in detail in Section 3.3
3 all sources and receivers must describe their contexts beforehand, with respect to a collection of shared

ontologies. For a good discussion on contexts, ontologies and conflict detection see [7]

www.manaraa.com

from the list of all sources registered with COIN. Then, he needs to select tables of interest,
attributes from those tables, and finally place some constraints on the requested data -
write the "WHERE" clause. At this point, the Browser supports simple conditions and
conjunctions of conditions. Future plans include adding disjunction capabilities. A detailed
example of the query formulation process is described in Section 4.2.

Even though the users are expected to have some basic understanding of the SQL syn-
tax, the formulation of a query might be a confusing and frustrating process, especially
when the user does not have prior experience with the source he is querying. The Mul-
tidatabase Browser addresses this issue by providing an extensive on-line help utility. At
each point throughout the interaction, the user can view the query that he has created. A
help file is available to answer stage specific questions about the meaning of checkboxes and
pushbuttons on the Browser screens. This file also includes a guided tour, which takes the
user through composition of a simple query. A "mailto" link is also provided on every page
for more complicated questions, comments and bug reports.

Before sending the query to the router for the execution, the user can select his local
context and switch on the mediation process. Query results, mediated or not, are presented
back to the user in the form of the table.

In the early implementations of the Browser, it was realized that the users often want to
perform the same query repeatedly over a prolonged period of time. Checking a company
stock price on a daily basis is an example of a such query. Rather than having to go through
all the steps of composing the appropriate SQL query every time the user wants to execute
it, a feature was added to the Browser that allows users to save their favorite queries, along
with a short description in a file. An "open query" button allows for the execution of such
a query directly from the Browser's entry page.

3.2.1 Interface Design Considerations

In designing the Multidatabase Browser, special emphasis has been placed on making the
interface as user friendly as possible. The growing number of Web browsers provide varying
support for the HTTP protocol and various features of CGI. Some browsers, such as Lynx,
are text-based and do not support graphics. For this reason, it was stressed that the
Multidatabase Browser should use only the features that are most commonly available
across browsers. The interface has very little graphics and no background picture, which
not only provides consistent appearance but also preserves the network bandwidth and
speeds up the interaction process.

Many Web applications use custom bitmapped graphics or image maps for purposes of
navigation between pages. The Multidatabase Browser uses standard submit buttons with
names describing where each one of them leads to. The users never have to wonder where
to click on the page to get to the next stage of the interaction, which eliminates possible
confusion.

Each page of the Browser corresponds to a different stage in the process of formulating
the SQL query, but all of them have the same layout and uniform look. The length of each
page depends on the characteristics of the particular source that is queried4 , but the page
layout is compact to achieve short pages for most typical data sources, and thus eliminate
unnecessary scrolling and mouse travel. This might seem like a subtle point, but studies
have shown that users are less likely to pay attention to the material if it appears at the

4 i.e. how many relations/attributes does it have.

www.manaraa.com

bottom of the page, or they might not look at it at all [11].

3.3 The Wrapper Generator

The Wrapper Generator is an engine that allows for the incorporation of the data originating
from Web sites (and possibly other legacy systems) in the Context Interchange Network.
The Wrapper automatically performs all the steps necessary to obtain data values from
the Web site. It issues HTTP commands directly to the data server, thus mimicking the
interaction that would normally take place between a human user and a WWW site.

By providing an automated way of retrieving information from Internet sources, the
Wrapper Generator greatly expands COIN's knowledge pool. The Wrapper establishes a
uniform way of communicating with any Web server, which helps COIN's users avoid the
headaches of learning the individual interaction patterns for a number of sources. The
query mechanism chosen for the legacy sources is SQL. It is the Wrapper's job to translate
the user's SQL queries to native queries for each source. This requires the overhead of
maintaining a recipe of the interaction on a per source basis. All this information is kept
in a specification file. The payoff is having a uniform way of querying both legacy Web
sources and relational databases.

3.3.1 Web accessible sources

Currently, the Wrapper Generator is capable of interacting with sources that run under
the HTTP protocol5 . In order to be incorporated in the Context Interchange Network, the
source has to be semi-structured, i.e. it has to preserve persistent layout between inter-
actions. This is necessary, because the description file which tells the Wrapper Generator
where to look for the data items to be extracted from each HTML page relies heavily on the
presence of certain keywords in the page 6. The Wrapper Generator also assumes that the
names of CGI input variable do not change over time. Some documents randomly generate
field names for the widgets and for that reason they cannot be published through COIN.

3.3.2 Specification File

The Wrapper Generator can be thought of as a very high level intepreter: it executes steps
necessary to answer SQL queries to the Web sites, based on the recipe contained in the
specification file. Because the specification file contains all the details necessary to perform
an automated document retrieval from the Web site, along with patterns that match the
data values to be extracted from those documents, writing a specification file is by no
means an easy process, and requires that the users are familiar with the basics of HTTP
and HTML. This task should be performed by the site maintainers.

The specification file is a template for the interaction with the Web server that results
in retrieval of information that is interesting for the COIN user. Typical interactions are
filling out an HTML form, making a selection from a popup menu (followed by, in both
cases, pressing a submit button) or simply clicking on any of the links in the page. Not all
the possible interactions with the server have to be modeled in a specification file. Sending

5 Future implementations might include other protocols, such as FTP, for example.
For example, in the name of a particular page is probably located between <TITLE> and </TITLE>

HTML anchors

www.manaraa.com

an electronic mail comment to the site webmasters, for instance, should probably not be
represented, because it has no relevance to the information that COIN can obtain from
that particular site. Thus far, specification files have been written for sources of financial
information, such as the Olsen & Associates currency converter 7, and Security APL Quote
Server8 .

The model that best represents the information that is contained in a spec file is a
directed, acyclic graph, where nodes correspond to the HTML documents, and edges cor-
respond to the HTTP actions that need to take place in order to get to those documents.
Currently, the Wrapper supports two types of actions, namely the HTTP Post and Get
methods. Following a URL link corresponds to HTTP Get, and pressing a submit button
usually corresponds to HTTP Post.

The specification file for the Networth source is listed in Appendix A. The file can be
divided into three main sections: general information, a list of edges (transitions), and a list
of nodes (states). Throughout the spec files, all the variables are surrounded by double hash
marks (##). We call the variables that must be provided in a query (e.g. ticker symbol
when querying a stock quotes server) bound variables, and those that can be retrieved at
a particular step (from an HTML document), and do not have to be specified beforehand,
free variables. Each transition contains the name of the HTTP server that publishes the
document for the upcoming state, a retrieval method (either Post or Get), and a path to
the actual document on that server (including CGI query variables). Should the transition
require a bound variable to be specified a priori (such as a ticker symbol in the scenario
described above), it would be listed under "Condition:" section. Each state enumerates all
the outgoing transitions. The transition actually taken when leaving the state is determined
by the input query in a deterministic way. For each free variable to be retrieved in a given
state the state description contains a "pattern" to be matched against the entire HTML
document. For example:

"networth. Ticker ,\s\((.*?)\)\</FONT\>#"
means that the networth.Ticker free variable should be found between a "," and a
anchor9 .

The state diagram for the Networth site is shown in Figure 3-3. The two transitions out
of StateO correspond to the two possible ways in which the Networth server can be queried:
the user can either enter the ticker symbol, or a company name (the third possible way to
query Networth server would be to look for graphs of ticker trends for a given period of
time and get a GIF image as a result. COIN does not support non character data at this
point, so this type of interaction would not be represented in a specification file). There
might be more then one answer to a string search on a company namelo, so that the states
that those two transitions lead to are actually different: Statel yields a specific quotes for
a given ticker symbol, State2 lists all the company names matching the query string.

'http://www.olsen.ch/cgi-bin/exmenu
8http://www.secapl.com/cgi-bin/qso
9For more information on Perls regular expressions consult Perls on-line documentation:

http://www.mit.edu/perl/perlop.html
10entering "shell" yields several responses, including: "Shell Trans & Trading Plc", "Shell Canada Ltd",

and "Shells Seafood Restaurants Inc".

www.manaraa.com

State1

:/ u es.a1t com/cl

Transition1
NETworth Quote Server

& Oracle Corporation (orc)
Last: 33,7/8 Pre. Close: 33 7/8

Volume: 3,220,200 Market: Nasdaq

!Ick

Transition2

Figure 3-3: State transition diagram for Networth quotes server.

StateO

www.manaraa.com

Chapter 4

Implementation

This chapter describes the implementation details of the Multidatabase Browser and the
Wrapper Generator, as two examples of Web based applications.

4.1 CGI and Perl

The Multidatabase Browser is a Common Gateway Interface (CGI) version 1.1 script. The
choice of using CGI for the purpose of implementation of the Multidatabase Browser was
well justified when the Browser was first written, in the summer of 1995, due to the lack of
other paradigms for Web programming. Nowadays, with the availability of such powerful
programming languages as Java and JavaScript, this choice could be questioned. In defense
of CGI comes the simplicity of the interface, good on-line documentation, and also some
inherent problems with Java, which will be mentioned in Chapter 5, section 5.0.3 on page 49.

The second important implementation choice was a choice of a programming language
to write the code itself. Since it first came around, CGI has been implemented in many
languages, such as C, C++, Tcl and others. For this project, the language chosen was Perl5,
written by Larry Wall. There were two main reasons for this decision. First of all, Perl is
an excellent language for a variety of tasks, especially those which require text management
and data parsing. It has built-in memory management and other security features which
can save implementors a lot of headaches and result in more secure programs that are also
easier to maintain. Finally, it has several convenient high-level constructs (list and hash
tables as datatypes, regular expression operators) which account for fewer lines of code to
do the same task as programs written in C, for example. Moreover, fewer lines of code
usually translate to fewer potential bugs'. The second important reason for choosing Perl
was that several Perl libraries that implement CGI are publicly available. In this project,
it was decided to use the CGI.pm package 2.

CGI.pm is a Perl5 library written and distributed by Lincoln D. Stein3. CGI.pm uses
Perl5 objects to create fill-out forms on the fly and parse their contents [13]. It provides a
simple interface for parsing and interpreting query strings passed to CGI scripts. CGI.pm
provides a set of functions that create HTML elements each time the script is invoked, so

Of course there are some trade offs, when using Perl, such as performance, as it is always an issue with
interpreted languages.

2The most recent version of the library and a copyright notice can be found at
http://www-genome.wi.mit. edu/ftp/pub/software/WWW/

3 Whitehead Institute, MIT Center for Genome Research. Email: lstein@genome.wi.mit.edu

www.manaraa.com

there is no need for remembering exact HTML syntax when using this library. CGI objects
also handle correctly HTTP Post and Get methods. Provided you have created a new CGI
object called query, you can create a text field named 'foo' initialized to the string 'hello'
as follows:

print $query->textfiled('foo', 'hello');
Other form elements are handled in a similar fashion.

4.2 Multidatabase Browser Interface

The Multidatabase Browser can be found at:
http://context.mit.edu/Development/browser-mediated.cgi.
The best way to understand how interaction with the Browser works is to go through an
example. We will therefore query the Networth site for the latest stock price of Oracle
Corporation stocks4 .

4.2.1 A typical SQL query

The following sections list the most important steps involved in a typical user interaction
with the Browser.

" Data source Selection

The first step in formulating a query is selecting a data source to be queried (or
several data sources, in the case of a multidatabase query) by pressing an appropriate
button. The data source selection requires, unfortunately, that the user knows which
data source contains information valuable to him. To some extent, this problem can
be overcome by browsing through the context of each source. The link to the Ontology
Editor, which allows one to view and modify contexts and underlying ontologies, is
located on the right hand side of the data source name (see Figure 4-1). Only users
with prior exposure to the concept of ontology are recommended to use the link. Next
to the link to the Ontology Editor, there is a link for the original source of data. In
case of RDBMS's this is a link to the database - WWW gateway, in case of Web based
sources - it is a URL for the actual HTML pages.

Once the data source has been selected, the user then clicks on the "choose a database"
button to proceed. An "open query" button is also provided as a way to short cut to
execute pre-saved query.

" Table Selection

When the data source has been specified, the next step is to chose relations of interest
to the user. This corresponds to building the "FROM" clause of the SQL statement.
For example, one can select table networth from source Networth (Figure 4-2). Other
sources can have more than one table. Before proceeding to the next stage, the user
has to press the "submit table selection" button.

4the actual SQL query would be:
select networth. Ticker, networth. Company, networth.Last
from networth
where networth.Ticker = 'orcl'

www.manaraa.com

Figure 4-1: User selects Networth source to be queried.

" Attribute Selection

In this step, the user selects attributes (columns) of the relations (tables) that were
chosen in the previous steps. Those are both attributes that end up in the "SELECT"
and "WHERE" clause of the final query. The user is not committed to the final
"SELECT" clause here - instead he should choose all attributes of interest to him
(Figure 4-3).

" Building "WHERE" clause

This is perhaps the most confusing step in formulating the SQL query. In the left
column, all the attributes that were selected in the previous stages are listed. In
order to output attributes of one's choice to the final target list, the corresponding
checkboxes should be clicked. The right hand side column contains conditions which
form the "WHERE" clause. Initially, no conditions are specified and an "edit con-
dition" message appears next to each button. In order to specify a restriction on a
given attribute, the user should select the appropriate checkbox and depress the "edit
condition" button. The "WHERE" clause becomes a conjunction of all the conditions
specified by the user (Figure 4-4).

" Displaying the Query

Should the user want to see the SQL query composed so far, the "display query"
button is provided at each screen (Figure 4-5).

www.manaraa.com

Figure 4-2: Networth source has only one relation - "networth".

e Query Results

Finally, the user presses the "execute button", and query results are displayed in a
tabular form (Figure 4-6). At this point, the user may choose to diplay the final
query, save the results or proceed with a new query.
Any questions and comments about the Browser should be directed to webmas-
ter~context. mit. edu.

4.2.2 Testing

The Multidatabase Browser script has been tested on a Netscape 2.1 browser (as well as
earlier versions) on a Unix platform. Since the script contains only standard CGI elements,
it should also run under any other browser that supports the following features:

e hidden data - this is necessary in order to maintain the state information between
script invocations. For example, the knowledge of what data sources, relations and
attributes have been selected thus far is kept in the form of hidden fields. Hidden
fields are similar to textarea or checkbox fields, except they are not displayed when
HTML source code is rendered by the browser. One can see hidden data when using
"view source" option of the browser 5

5 Here is an example of hidden variable that keeps the table selection information:
<INPUT TYPE=" hidden" NAME=" Networth:tables" VALUE="networth">

www.manaraa.com

Figure 4-3: "Ticker", "Company" and "Last" attributes are selected.

o named submit buttons - those are required to provide several options when exiting
a form. In the case of the Multidatabase Browser, one can choose, for example, to
either proceed with table selection or to view the SQL source for the query that was
created up to that point.

e multiple selections from a list - this is the only way for users to pick more then
one item from a list, such as picking several data sources to queried.

In order to find out whether a particular browser supports features listed above, a simple
test can be run using Digital's HTML Form-Testing Home Page, located at:

http://www.research.digital.com/nsl/formtest/home.html.

4.3 Wrapper Generator Algorithm

As was mentioned before, the purpose of the Wrapper Generator is to provide COIN with
on-the-fly access to data originating from publicly accessible Web sites. The Wrapper
Generator is an anonymous WWW agent which directly communicates with the WWW
servers using the HTTP protocol. It visits sites specified by the specification file, retrieves
relevant pages, and extracts pre-defined sets of values.

The Wrapper takes in two inputs: a specification file and an SQL query to be performed
against the site. The SQL query is assumed to be a simple conjunction of conditions. It is

www.manaraa.com

Figure 4-4: The user wishes to see the latest stock price and company name for Oracle
Corporation.

beyond the current Wrapper Generator's capability to deal with more complicated queries.
Provided that the source is capable of answering the input query, the Wrapper Generator
returns answers in the form of an HTML table. It is the specification file that defines the
interaction with a WWW server or a set of servers which yields to document retrieval. The
specification file consists of states and transitions. It is essentially a directed acyclic graph,
where states correspond to nodes, and transitions to edges between those nodes. Each state
corresponds to a single HTML document. Each state's description contains a list of Perl5
patterns, or regular expressions, corresponding to keywords that are extracted in that stage.
The patterns use HTML anchors to specify the relative location of values of interest in the
document. To avoid repeated retrieval of the same document from the server, local variables
should be used. Such variables are surrounded by double hash marks (##). Local variables
can only appear in the body of the pattern if their corresponding values were retrieved in
the states preceding the current state in the execution path, or were retrieved by earlier
patterns in that state. The order of patterns in the state specification is, therefore, essential.
For example, let us picture a document that contains a table of company stock information
keyed by date, and current date is shown on the top of the page. In order to obtain the

latest stock quotes from that document, the Wrapper Generator would first have to retrieve
the current date, store it in a bound variable ##DATE##, and then use this variable to
find out the location of the latest quotes in the table. The corresponding regular expressions
would look as follows:

www.manaraa.com

Figure 4-5: The SQL syntax.

Variable name: Pattern:
DATE Current date (.*?).#
STOCK-RICE ##DATE##...(#

The transitions describe HTTP methods that should be used for the retrieval of the
document corresponding to the next state in the query execution. Two methods are sup-
ported: HTTP Post and Get. Each transition's action URL can be parameterized much
like patterns in state specification. Each transition may contain a condition which puts a
constraint on when the transition should be taken. Conditions are either local variables,
assumed to be extracted from the earlier documents by the time the transition is taken, or
values supplied by the constraints of the input SQL query. For the Networth source, the
ticker symbol has to be specified before obtaining the stock information, so it is a condition
for one of the transitions leaving StateO (See Figure 3-3 on page 33).

The process of answering the SQL query can be divided into two steps. First, the
Wrapper Generator builds up a plan for the query execution. The plan always starts with
StateO. Transitions originating from that state are considered in the order they appear in
the state description. For each transition, the conditions are matched against the set of
attributes and local values known thus far. At the beginning, the set of known attributes is
initialized to values supplied by the constraints of the query and whatever keywords were
extracted in StateO. The first transition for which conditions are satisfied is added to the
plan along with its destination state. The plan is build incrementally until the state is
reached for which there are no outgoing transition, i.e., a final state. At this point the plan

www.manaraa.com

Figure 4-6: And finally, the results.

is passed to the Wrapper's execution engine. For each state, the engine retrieves an HTML
document via HTTP Post or Get and extracts all the keywords, replacing all free variables
with values known so far. For each transition, the engine looks up the method and action for
the document to be retrieved next. When a final state is reached, the engine generates an
HTML table based on the attributes requested in the SQL query and the values retrieved by
the plan execution. The entries in the table appear in the same order as the query targets.

4.3.1 Problems and Limitations

The Wrapper Generator provides a solution to the problem of incorporating data published
on the Web in the COIN system. It is important to realize, however, that the methods
employed by the Wrapper are by no means a general solution to this problem. To build
an efficient tool that extracts information from a variety of WWW sources, each having
a unique interface and a unique interaction pattern, and present all this information in a

uniform way, is not an easy task. The main trade-off is between having a single query
interface for all the sources and requring to write a specification file for each Web source.
The complexity of the interaction with a WWW site is buried at the level of specification
file.

It is not a suprise, that each time the location of any of the sites described by the
specification file changes, the file has to be updated accordingly. The same holds true for
any changes made to the layout of the documents, because regular expressions rely heavily

www.manaraa.com

on the location of certain HTML tags and keywords in the document. This problem can, to
some extent, be overcome by making regular expressions as general as possible and hoping
that, should the document change slightly, the patters will still hold. In case of either
changes to the document location 6 or updates to the page layout, no changes are needed to
the Wrapper Generator script.

Another problematic issue is that of the specification file. Writing a new specification
file requires a good understanding of how the underlying WWW sites operates. The speci-
fication file writer should have a good understanding of HTTP and CGI. He should be able
to model the site in the form of a state transition diagram and abstract the human user
interaction that the site is built for to the level of the inner workings of CGI. For example,
the action of clicking on a submit button is nothing else than setting the CGI variable "sub-
mit-button" to its "on" value. Once the writer has the general picture of how to represent
the site in a form of states and transitions, he has to specify how to extract data from the
site: write regular expressions. This step requires both understanding of a relational data
model and knowledge of Per15 regural expresions. So far all the specification files for the
sources registered with COIN have been writtern by project team members, and it has not
been tested how a person from outside our research group would perform a similar task.

61t should be noted that the URL changes axe perhaps one the most annoying problems with the Web
today. Each time the document's location and thus URL changes, all the references to that document have
to be updated manually.

www.manaraa.com

Chapter 5

Lessons Learned and Future
Directions

The Multidatabase Browser has proved to be a very useful tool that provides a single query
interface to both relational databases and World Wide Web applications. The Browser's
position in the Context Interchange system is very strategic: it is currently the only front
end interface to COIN. In the future, other applications such as Excel and Access will also be
able to hook up to COIN using the standard interface of ODBC-like calls (SQLDataSources,
SQLExecDirect, etc.). Until that happens, the Browser will be responsible for carrying out
all the user interaction.

5.0.2 Future Work - Multidatabase Browser

Overall, the Multidatabase Browser has proved to be a very successful interface. This
chapter discusses some additions to the Browser that could improve its usefulness and
practicality from the user's point of view.

One of the most important improvements would be to extend the Browsers capabilities
in terms of the types of queries it can produce. Right now, the Browser can only formulate
simple SQL queries, that is, conjunctions of conditions and simple joins on attributes. It
would be desirable for the Browser to handle "or"'s as well as "and"'s and possibly other
SQL operators. In order to support more operators, changes would have to be made to the
Browser's interface. A scrolling list with a greater selection of operators could be added, so
that the users could specify how they wish to combine simple conditions in their queries.

The next issue which was not addressed very well in the current implementation is
the issue of user's privacy. The Browser was primarily used within the COIN research
group, and there was no immediate need to worry about the security problems that arise
when the number of users increases. Should the Browser be presented to a larger audi-
ence, certain measures would have to be taken to ensure individual privacy. First of all,
a username/password login mechanism should be implemented. The main goal of a such
mechanism would be to give each user a private working space, where he could save his
favorite queries, define his context and perform other customizations. User identification
is also necessary for developing access control in COIN. It is very likely that, in the fu-
ture, it will be desired to vary users privileges to access certain data sources or change the

'A prototype login screen can be found at:
http://context.mit.edu/cgi-bin/mint.cgi

www.manaraa.com

definitions of some contexts.
After the prototype version of the Multidatabase Browser had been developed, an im-

portant question was raised regarding the language chosen for implementation purposes. As
mentioned before, the HTML/CGI style of programing does not support certain features
that one would like to see in an fully interactive application. There are only two ways to
transmit information to the WWW application; selecting an HTML link transmits a request
for chosen document, and pressing a submit button transmits the state information about
the widgets. It is therefore not possible for a server to determine anything about intermedi-
ate activities performed by the user, such as typing text, toggling radio buttons or moving
the mouse. This is a serious limitation to some of the advanced features of user interfaces,
such as providing immediate feedback to the user. In the case of the Multidatabase Browser,
it would be nice to have the syntax of the SQL query be displayed to the user on the fly,
instead of having to go through a separate page. It would also be nice to see a visual display
of what happens after the user query is submitted for execution. One could imagine, for
example, a picture that shows a COIN architecture diagram (such as Figure 3-1 on page 23)
with arrows moving across to indicate the flow of data. It would be much preferable for
the user to have this kind of visual feedback as opposed to just clicking a "submit query"
button, waiting, and getting the results back after a while. In the HTML/CGI world, this
type of immediate visual feedback (synchronized with the background processing of the
query) is impossible to implement. What is needed to make it happen is a programming
environment that supports asynchronous communication and animation. For those reasons,
it was considered to have the Multidatabase Browser completely rewritten in Java.

5.0.3 Java and Javascript

Java is an object oriented and platform independent programming language developed at
Sun Microsystems. Java's popularity is due to its simple yet robust code and cross platform
portability2. From the perspective of the Multidatabase Browser, however, its most crucial
feature is its support for multithreading. Java allows building applications with many
concurrent threads of activity. This results in a high degree of interactivity for the end user.
One can imagine, for example, an application that executes users query and concurrently
displays an animation clip that explains what happens. Java applications can easily be
incorporated in HTML pages by placing an applet tag inside HTML source (for example, the
tag <APPLET CODE="Applet.class" WIDTH=150 HEIGHT= 150></APPLET>,
tells a Java capable browser to run the java code Applet.class in a box with width 150 pixels
and height 150 pixels). Currently, the only Browser capable of interpreting applet tags is
Netscape 2.0 or higher versions.

The problems with using Java to implement the Browser is one of the built in security
mechanisms. It is very hard to write an applet that both communicates with the network
and a local file system. Both features are required for the would-be Multidatabase Browser
applet: the file system access is required to open/save user queries and update context
information, the network access is required to communicate with the Wrapper Generator
script and Datasource Registry. In Netscape, any attempts by an applet to read or write
the local file system results in a dialog box for the user to grant approval, which would only
complicate user interaction. Another serious problem is the number of demonstrated flaws,

2For more information of Java see Sun's Java homepage at:
http://java.sun.com/

www.manaraa.com

which compromise security of Java applets [5].
Another language that supports high level graphical user interface features is Javascript,

developed by Netscape Communications Corporation. It resembles Java in most features,
but it is a scripting language, rather then a programming language. It was designed for
Web developers rather then object oriented programmers, and it is easier to use then Java3

5.1 Conclusions

The Multidatabase Browser and the Wrapper Generator are two tools developed for the
Context Interchange project. Both tools demonstrate some very important ideas to the
future of information exchange over the Internet: the Multidatabase Browser provides a
single query SQL access to heterogenous data sources, and the Wrapper Generator allows
for the incorporatation of new WWW sources in the COIN system.

3Javascript documentation can be found at:
http://home.netscape.com/

www.manaraa.com

Appendix A

Networth's description files

A.1 An Export Schema

networth
Company VARCHAR
Ticker VARCHAR
LastTrade VARCHAR
Last VARCHAR
High VARCHAR
Low VARCHAR
Change VARCHAR
PrevClose VARCHAR
Tick-Trend VARCHAR
Volume VARCHAR
Market VARCHAR
Year-ligh NUMBER
YearLow NUMBER
PE-Ratio NUMBER
LatestDiv VARCHAR
AnnualDiv VARCHAR

A.2 A Specification File

NAME: Networth
TYPE: WEB
URL: http://quotes.galt .com

TRANSITIONS:
TRANSITIONI:
CONDITION: networth.Ticker
SERVER: quotes. galt. com
METHOD: POST
ACTION: //cgi-bin/stocklnt?stock=##networth.Ticker##&action=O&period=
15&periodunit=O§ype=O&submit=Submit

www.manaraa.com

FROM: STATEO

TO: STATE1

END TRANSITION1

TRANSITION2:

CONDITION: networth.Company

SERVER: quotes .galt . com

METHOD: POST

ACTION: //cgi-bin/stocklnt?stock=##networth. Company##&action=2&period=
15&periodunit=O§ype=O&submit=Submit

FROM: STATEO

TO: STATE2

END TRANSITION2

END TRANSITIONS

STATES:

STATEO:

URL: http://quotes.gait.com/

OUT: TRANSITION1 TRANSITION2

END STATEO

STATE1:

URL: http://quotes.galt.com/cgi-bin/stockclnt

OUT: NONE

REGULAR EXPRESSIONS:

networth.Company

networth.Ticker

networth.Last
networth. Last Trade
networth.Low
networth.High

networth.Change

networth. Prev-Close
networth . TickTrend

networth.Volume

networth.Market

networth.Open

networth. Year-low
networth. Year-High
networth. PERatio
networth. LatestDiv
networth . AnnualDiv

\<FONT\sSIZE=\d\> (. *?),\s+\W\w+\W#

\s\ ((. *?) \) \</FONT\>#
Last\</A\>\s+(.*?)\s+\<A#
\(last\strade:\s(.*?)\sEST\W#
Day\sRange\</A\>\s\<TD\>\s* (.*?)\s*-\s*\d#
Day\sRange\</A\>\s\<TD\>. *?\s*-\s* (.*?)\s\s+#
Change\</A\>\s+ (. *?)\n#

Prev. \sClose\</A\>\s (. *?) \n#
Tick\sTrend\</A\>\s+\W+TD\> (. *?) \</TD\>#
Volume\</A\>\s+(.*?)\s+\<A#

Market\</A\>\s+(.*?)\s+\n#

Open: \</A\>\s+(.*\s+<A#
52\sweeks\Range\</A\>\s+(.*?)\s-#
52\sweek\sRange\</A\>\s+. *-\s (. *?) \n#
P/E\sRatio\</A\>\s+(.*?)\s+\<A#

Latest\sDiv. \</A\>\s+(.\s*\<A#

Annual\sDiv. \</A\>\s+(\s*\</PRE\>#

END STATE1

STATE2

www.manaraa.com

URL: http: //quotes .galt . com/cgi-bin/stockclnt

OUT: NONE

REGULAR EXPRESSIONS:

networth.Company
networth.Ticker

&stock=. *"\>.*\s-\s(.*?)\</A\>#
&stock=. *"\>(. *?) \s-#

END STATE2
END STATES

A.2.1 Legend

The specification file uses Perl5 regular expressions. A good discussion of regular expressions
can be found on-line at:
http://www.mit.edu/perl/perlop.html1 .
The meaning of Perl operators used in this specification file is expplained below:

\s a single whitespace character (e.g. space)

\s+ 1 or more spaces

\s* 0 or more spaces
\W A non-word character

\n newline
\d a single digit
\<, \> '<' and '>' are reserved characters for Perl5 regural expresions and have to be
preceeded by a backslash
is COIN convention for specifying the end of a pattern.

'For an overview of Perl5 patterns one can also see [14)

www.manaraa.com

Bibliography

[1] Tim Bernes-Lee. Hypertext Transfer Protocol.
URL ftp://info.cern.ch/pub/www/doc/http-specs.ps, 1993.

[2] Eric Bina, Rob McCool, Vicky Jones, and Marianne Winslett. Secure Access to Data
over the Internet.
URL http://bunny.cs.uiuc.edu/CADR/WinslettGroup/pubs/secureDBAccess.ps, 1994.

[3] Adil Daruwala, Cheng Goh, Scott Hofmeister, Karim Hussein, Stuart Madnick, and
Michael Siegel. The context interchange network prototype. Working Paper 3797,
MIT Sloan School of Management, MIT Sloan School of Management, Cambridge,
Massachusetts, February 1995.

[4] C. J. Date. An Introduction to Database Systems, volume 1 of Addison-Wesley System
Programming Series. Addison-Wesley Publishing Company, fourth edition, 1986.

[5] Drew Dean, Edward W. Felten, and Dan S. Wallach.
Java security: From hotjava to netscape and beyond. In 1996 IEEE Symposium on
Security and Privacy, Oakland, California, May 1996.

[6] Brian R. Gaines. Porting Interactive Applications to the Web.
URL http://ksi.cpsc.ucalgary.ca/KSI, 1995.

[7] Cheng H. Goh, Stuart E. Madnick, and Michael D. Siegel. Ontologies, Contexts, and
Mediation: Representing and Reasoning about Semantics Conflicts in Heterogenous
and Autonomous Systems. Working Paper 3848, MIT Sloan School of Management,
MIT Sloan School of Management, Cambridge, Massachusetts, August 1995.

[8] Martijn Koster. Robots in the web: threat or treat?
URL http://info.webcrawler.com/mak/projects/robots/threat-or-treat.html,
1994.

[9] Microsoft Corporation. ODBC 2.0 Programmer's Reference and SDK Guide, 1992.

[10] B. Pinkerton. Finding what people want: Experiences with the webcrawler. In Proceed-
ings of the Second International World Wide Web Conference, Chicago, IL, October
1994.

[11] J. Rice, A. Farquhar, F. Piernot, and T. Gruber. Lessons Learned Using the Web as
an Application Interface.
URL http://www-ksl.standford.edu/KSLAbstracts/KSL-95-69.html, September 1995.

www.manaraa.com

[12] Lincoln D. Stein. How to Set Up and Maintain a World Wide Web Site. The Guide
for Information Providers. Addison-Wesley Publishing Company, 1995.

[13] Lincoln D. Stein. Cgi.pm - a Perl5 CGI Library.
URL http://www-genome.wi.mit.edu/ftp/pub/software/WWW/, 1996.

[14] Dave Till. Teach Yourself Perl in 21 Days. UNIX Librabry. SAMS Publishing, first
edition, 1995.

[15] Sylvia Willie. Graphically Supporting Information Search. In Proceedings QCHI94
Symposiun, Gold Coast, Australia, July 1994.

